Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Counselor Education and Supervision ; : No Pagination Specified, 2023.
Article in English | APA PsycInfo | ID: covidwho-20234743

ABSTRACT

The COVID-19 pandemic brought disruption to teaching and other aspects of workload in higher education. The current study sampled 126 counselor educators about workload, compassion satisfaction, burnout, and job satisfaction. Results indicated that faculty workload and administrative responsibilities increased for counselor educators during the pandemic without adequate compensation or support. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

2.
Cureus ; 15(3): e36093, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2301556

ABSTRACT

Introduction Coronavirus disease 2019 (COVID-19) is known to cause cardiac abnormalities in adults. Cardiac abnormalities are well-described in multisystem inflammatory syndrome in children, but effects in children with acute COVID-19 are less understood. In this multicenter study, we assessed the cardiac effects of acute COVID-19 among hospitalized children (<21 years) admitted to three large healthcare systems in New York City. Methods We performed a retrospective observational study. We examined electrocardiograms, echocardiograms, troponin, or B-type natriuretic peptides. Results Of 317 admitted patients, 131 (41%) underwent cardiac testing with 56 (43%) demonstrating cardiac abnormalities. Electrocardiogram abnormalities were the most common (46/117 patients (39%)), including repolarization abnormalities and QT prolongation. Elevated troponin occurred in 14/77 (18%) patients and B-type natriuretic peptide in 8/39 (21%) patients. Ventricular dysfunction was identified in 5/27 (19%) patients with an echocardiogram, all of whom had elevated troponin. Ventricular dysfunction resolved by first outpatient follow-up. Conclusion Electrocardiogram and troponin can assist clinicians in identifying children at risk for cardiac injury in acute COVID-19.

3.
Biophys Chem ; 295: 106971, 2023 04.
Article in English | MEDLINE | ID: covidwho-2275211

ABSTRACT

Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the ß barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.


Subject(s)
COVID-19 , Membrane Proteins , Humans , Membrane Proteins/chemistry , Membrane Lipids , Artificial Intelligence , Models, Molecular , SARS-CoV-2/metabolism , Lipid Bilayers/chemistry , Adaptor Proteins, Signal Transducing/metabolism
4.
Ann Pediatr Cardiol ; 15(5-6): 459-466, 2022.
Article in English | MEDLINE | ID: covidwho-2272253

ABSTRACT

Context: Cardiac injury has been described in both acute COVID-19 and the multisystem inflammatory syndrome in children (MIS-C). Echocardiographic strain has been shown to be a sensitive measure of systolic function. Aims: We sought to describe strain findings in both the groups on initial presentation and follow-up. Settings and Design: A retrospective study analyzing echocardiograms of all patients presenting with acute COVID-19 infection and MIS-C at our institution between March 2020 and December 2020 was performed. Subjects and Methods: TOMTEC software was used for strain analysis in both the study groups (COVID-19 and MIS-C) and age-matched healthy controls. Strain was correlated with LV ejection fraction (EF) and serum troponin levels. Results: Forty-five patients (34 - MIS-C and 11 - COVID-19) met the inclusion criteria. There was a statistically significant decrease in LV longitudinal strain (P < 0.001), LV circumferential strain (P < 0.001), and left atrial strain (P = 0.014) in the MIS-C group when compared to the control group. There was a statistically significant decrease in LV longitudinal strain (P = 0.028) in the acute COVID-19 group. All patients with abnormal left ventricular EF (LVEF) had abnormal strain. However, 14 (41%) patients in the MIS-C group and 3 (27%) in the acute COVID-19 group had preserved LVEF but abnormal strain. There was a significant correlation with LV longitudinal strain (P = 0.005) and LVEF (P = 0.002) and troponin in patients with MIS-C. Abnormal strain persisted in one-third of patients in the MIS-C and acute COVID-19 groups on outpatient follow-up. Conclusions: Patients with MIS-C and acute COVID-19 can develop myocardial dysfunction as seen by abnormal strain. LV longitudinal strain correlates with cardiac injury as measured by serum troponin in patients with MIS-C. Strain may provide an additional tool in detecting subtle myocardial dysfunction. It can be routinely employed at diagnosis and at follow-up evaluation of these patients.

5.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2793643.v1

ABSTRACT

Acute myeloid leukemia (AML) is fatal in majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting IQGAP1-GRD domain, and conducted SAR of ‘fittest hit’ to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, G2/M arrest, and colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. IQGAP1/F-actin showed co-localization and UR778Br induced filopodia formation in U937 cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows dependency on IQGAP1 and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia
6.
Brain Behav Immun ; 107: 87-89, 2023 01.
Article in English | MEDLINE | ID: covidwho-2232141

ABSTRACT

Emerging evidence suggests a detrimental impact of COVID-19 illness on the continued hippocampal neurogenesis in adults. In contrast, the existing literature supports an enhancing effect of COVID-19 vaccination on adult hippocampal neurogenesis. Vaccines against respiratory infections, including influenza, have been shown to enhance hippocampal neurogenesis in adult-age animals. We propose that a similar benefit may happen in COVID-19 vaccinated adults. The vaccine-induced enhancement of the hippocampal neurogenesis in adults thus may protect against age-related cognitive decline and mental disorders. It alsohints at an added mental health benefit of the COVID-19 vaccination programs in adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control
7.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: covidwho-2225692

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are emerging rapidly and offer surfaces that are optimized for recognition of host cell membranes while also evading antibodies arising from vaccinations and previous infections. Host cell infection is a multi-step process in which spike heads engage lipid bilayers and one or more angiotensin-converting enzyme 2 (ACE-2) receptors. Here, the membrane binding surfaces of Omicron subvariants are compared using cryo-electron microscopy (cEM) structures of spike trimers from BA.2, BA.2.12.1, BA.2.13, BA.2.75, BA.3, BA.4, and BA.5 viruses. Despite significant differences around mutated sites, they all maintain strong membrane binding propensities that first appeared in BA.1. Both their closed and open states retain elevated membrane docking capacities, although the presence of more closed than open states diminishes opportunities to bind receptors while enhancing membrane engagement. The electrostatic dipoles are generally conserved. However, the BA.2.75 spike dipole is compromised, and its ACE-2 affinity is increased, and BA.3 exhibits the opposite pattern. We propose that balancing the functional imperatives of a stable, readily cleavable spike that engages both lipid bilayers and receptors while avoiding host defenses underlies betacoronavirus evolution. This provides predictive criteria for rationalizing future pandemic waves and COVID-19 transmissibility while illuminating critical sites and strategies for simultaneously combating multiple variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cryoelectron Microscopy , Lipid Bilayers , Antibodies , Cell Membrane
8.
JMIR Bioinform Biotech ; 4: e42700, 2023.
Article in English | MEDLINE | ID: covidwho-2215079

ABSTRACT

Background: Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective: The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results: Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions: In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.

9.
PLoS One ; 18(1): e0280745, 2023.
Article in English | MEDLINE | ID: covidwho-2214811

ABSTRACT

BACKGROUND: After admission to hospital, COVID-19 progresses in a substantial proportion of patients to critical disease that requires intensive care unit (ICU) admission. METHODS: In a pragmatic, non-blinded trial, 387 patients aged 40-90 years were randomised to receive treatment with SoC plus doxycycline (n = 192) or SoC only (n = 195). The primary outcome was the need for ICU admission as judged by the attending physicians. Three types of analyses were carried out for the primary outcome: "Intention to treat" (ITT) based on randomisation; "Per protocol" (PP), excluding patients not treated according to randomisation; and "As treated" (AT), based on actual treatment received. The trial was undertaken in six hospitals in India with high-quality ICU facilities. An online application serving as the electronic case report form was developed to enable screening, randomisation and collection of outcomes data. RESULTS: Adherence to treatment per protocol was 95.1%. Among all 387 participants, 77 (19.9%) developed critical disease needing ICU admission. In all three primary outcome analyses, doxycycline was associated with a relative risk reduction (RRR) and absolute risk reduction (ARR): ITT 31.6% RRR, 7.4% ARR (P = 0.063); PP 40.7% RRR, 9.6% ARR (P = 0.017); AT 43.2% RRR, 10.8% ARR (P = 0.007), with numbers needed to treat (NTT) of 13.4 (ITT), 10.4 (PP), and 9.3 (AT), respectively. Doxycycline was well tolerated with not a single patient stopping treatment due to adverse events. CONCLUSIONS: In hospitalized COVID-19 patients, doxycycline, a safe, inexpensive, and widely available antibiotic with anti-inflammatory properties, reduces the need for ICU admission when added to SoC.


Subject(s)
COVID-19 , Humans , Doxycycline , SARS-CoV-2 , Hospitalization , Intensive Care Units , Treatment Outcome
10.
Front Med (Lausanne) ; 9: 751929, 2022.
Article in English | MEDLINE | ID: covidwho-2215298

ABSTRACT

Fever remains an integral part of acute infectious diseases management, especially for those without effective therapeutics, but the widespread myths about "fevers" and the presence of confusing guidelines from different agencies, which have heightened during the coronavirus disease 2019 (COVID-19) pandemic and are open to alternate interpretation, could deny whole populations the benefits of fever. Guidelines suggesting antipyresis for 37.8-39°C fever are concerning as 39°C boosts the protective heat-shock and immune response (humoral, cell-mediated, and nutritional) whereas ≥40°C initiates/enhances the antiviral responses and restricts high-temperature adapted pathogens, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strains of influenza, and measles. Urgent attention is accordingly needed to address the situation because of the potential public health consequences of the existence of conflicting guidelines in the public domain. We have in this article attempted to restate the benefits of fever in disease resolution, dispel myths, and underline the need for alignment of national treatment guidelines with that of the WHO, to promote appropriate practices and reduce the morbidity and mortality from infectious diseases, such as COVID-19.

11.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2186696

ABSTRACT

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
13.
Current Science (00113891) ; 123(8):987-994, 2022.
Article in English | Academic Search Complete | ID: covidwho-2100592

ABSTRACT

As a result of the SARS-CoV-2 pandemic, water bodies connected to anthropogenic activities may likely reveal the presence of viral genetic material. Urban, periurban and rural water bodies in and around Hyderabad, Telangana, India, were monitored for the presence of SARS-CoV-2 gene fragments during the first and second wave of COVID-19 infection. The SARS-CoV-2 genes were not detected in peri-urban and rural lakes, whereas urban lakes having direct functional attributes from domestic activity showed prevalence. Distinct variability in viral load observed among five water bodies was in concordance with human activity in the catchment area. High viral load was observed during the peaks of the first and second waves, specifically in urban lakes. [ FROM AUTHOR]

14.
Cureus ; 14(9): e29344, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2072215

ABSTRACT

Muscular dystrophies (MDs) are a category of hereditary illnesses characterized by the gradual malfunction and/or weakening of the skeletal muscles. This disease of the muscles also results in hypotonia and joint contracture, along with raised serum creatine kinase (CK) levels. To prevent complications, continuous physiotherapy is advised for children with muscular dystrophy, which is even asked to perform at home as a home exercise program (HEP). As a result, the home exercise program (HEP) is critical in maintaining the optimal health of children with Duchenne muscular dystrophy (DMD). The present coronavirus (COVID-19) pandemic has adversely affected these children as there was very little scope to get direct help from a physiotherapist. Meanwhile, the home program was continued by many to compensate for the direct benefit. However, because of the lack of specific guidelines and structured methodology to follow for a home program, there was a deterioration in the health status of many children. There is a need to understand how the children are getting affected and the way the home program can be refined to help needy children with muscular dystrophy. Our scoping review aims to identify the present home program patterns being followed for children with DMD and their scope for refinement. The data were collected from electronic databases including PubMed, ProQuest, Cochrane, and Web of Science. We searched four electronic databases until September 2021. We included the published case studies, observational and experimental studies that described the positive impact of home exercise programs, and the methodology they followed as an alternative to institution-based physiotherapy. One hundred thirty-eight titles were screened, and 58 met the inclusion criteria. Along with regular physiotherapy, the incorporation of HEP helped in early complication prevention in patients with muscular dystrophy. The HEP was found to be a successful adjunct in the COVID-19 scenario. This review presents different therapeutic measures that can be taken for the prevention of complications in patients with MD and how the HEP plays an important role in removing the gaps on how HEP is beneficial in the COVID-19 scenario and a scope to refine the present methodologies for more accurate management.

15.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.02.22276012

ABSTRACT

The extent of gendered COVID-19 impact remains undetermined for the lack of sex-disaggregated data. The prevailing view puts males nearly twice as impacted as females. Globally, access to resources and their usage are gendered- mostly favoring males. Gender gaps widen during natural/man-made calamities and pandemics. Modeling estimates of impact for top 70 countries reporting >300 sex-disaggregated COVID-19 deaths (>80% of total), indicates average mortality sex (male:female) ratio (COVID-MSR) of 1.37{+/-}0.30 (95% confidence interval:1.30-1.44; range:0.85-2.47) against prevalent pre-pandemic MSR of 1.79{+/-}0.41 (1.70-1.89; range:0.93-2.99). Contrary to the prevailing view, widened gender gaps globally increased female mortality by 19.57{+/-}21.16% (14.62%-24.88%; range: -22.46 to +68.50%) causing an estimated 22.03% excess deaths (360 thousand by 30 December 2021). Identification of factors favoring gendered impacts is needed for equitable pandemic management.


Subject(s)
COVID-19
16.
Cureus ; 14(8): e28650, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2056328

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread around the globe. The most common symptoms associated with this are usually respiratory, but different central nervous system manifestations have been reported. There are many cases of Guillain-Barre syndrome (GBS) post-COVID-19. However, only a few simultaneous afflictions of COVID-19 with GBS have been reported. Therefore, our study aims to investigate a case of GBS along with COVID-19 infection in India. A 22-year-old male with no medical history presented with fever along with global weakness and breathing difficulty. There was no history of travel. At the time of admission, he had developed quadriparesis and had muscular strength of 2/5 in bilateral lower limbs and 3/5 in bilateral upper limbs. When the patient developed breathing difficulty, he was transferred to the intensive care unit. The cerebrospinal fluid evaluation showed albumin-cytological dissociation, and a nerve conduction study was done. The patient was managed by neuro physiotherapy 34 days after COVID-19 exposure. After proper physiotherapy and rehabilitation, the patient was able to return to his college life.

17.
Brain, behavior, and immunity ; 2022.
Article in English | EuropePMC | ID: covidwho-2045934

ABSTRACT

Graphical Emerging evidence suggests a detrimental impact of COVID-19 illness on the continued hippocampal neurogenesis in adults. In contrast, the existing literature supports an enhancing effect of COVID-19 vaccination on adult hippocampal neurogenesis. Vaccines against respiratory infections, including influenza, have been shown to enhance hippocampal neurogenesis in adult-age animals. We propose that a similar benefit may happen in COVID-19 vaccinated adults. The vaccine-induced enhancement of the hippocampal neurogenesis in adults thus may protect against age-related cognitive decline and mental disorders. It also hints at an added mental health benefit of the COVID-19 vaccination programs in adults.

18.
JMIR bioinformatics and biotechnology ; 3(1), 2022.
Article in English | EuropePMC | ID: covidwho-2045933

ABSTRACT

Background Since the start of the COVID-19 pandemic, health policymakers globally have been attempting to predict an impending wave of COVID-19. India experienced a devastating second wave of COVID-19 in the late first week of May 2021. We retrospectively analyzed the viral genomic sequences and epidemiological data reflecting the emergence and spread of the second wave of COVID-19 in India to construct a prediction model. Objective We aimed to develop a bioinformatics tool that can predict an impending COVID-19 wave. Methods We analyzed the time series distribution of genomic sequence data for SARS-CoV-2 and correlated it with epidemiological data for new cases and deaths for the corresponding period of the second wave. In addition, we analyzed the phylodynamics of circulating SARS-CoV-2 variants in the Indian population during the study period. Results Our prediction analysis showed that the first signs of the arrival of the second wave could be seen by the end of January 2021, about 2 months before its peak in May 2021. By the end of March 2021, it was distinct. B.1.617 lineage variants powered the wave, most notably B.1.617.2 (Delta variant). Conclusions Based on the observations of this study, we propose that genomic surveillance of SARS-CoV-2 variants, complemented with epidemiological data, can be a promising tool to predict impending COVID-19 waves.

19.
Annals of Movement Disorders ; 5(2):112-117, 2022.
Article in English | Scopus | ID: covidwho-2040101

ABSTRACT

Introduction: The coronavirus disease-19 (COVID-19) pandemic is a global health crisis that has directly and indirectly impacted almost all populations globally. In this study, we aimed to study the impact of the COVID-19 pandemic on motor and nonmotor symptoms in patients with various movement disorders who visited our outpatient department. Materials and Methods: We conducted a prospective study using a structured questionnaire involving patients who visited our outpatient department during the COVID-19 pandemic from May 2020 to April 2021. The study was conducted at the Department of Neurology at the National Institute of Mental Health and Neuro Sciences, Bangalore. Results: A total of 208 patients with the following disorders were assessed: Parkinson's disease (n = 141), atypical parkinsonism (n = 31), dystonia (n = 15), Wilson's disease (n = 5), and other disorders (n = 16). Approximately, 3.5% of the patients had acquired the COVID-19 infection. Almost 80% of the patients had missed scheduled appointments with their physicians during this study period due to travel restrictions or the fear of traveling. Approximately, 50% of the patients experienced worsening of their motor and nonmotor symptoms. Approximately, 25% of patients availed teleconsultation facilities, and majority of them found it to be equivalent to or better than in-person consultation. Almost 80% of the patients were eager to receive the COVID-19 vaccination. Conclusion: The COVID-19 pandemic resulted in worsening of both motor and nonmotor symptoms in patients with movement disorders. Teleconsultation is a helpful option in managing the patients' symptoms during the pandemic. © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

20.
ERJ Open Res ; 8(3)2022 Jul.
Article in English | MEDLINE | ID: covidwho-1986733

ABSTRACT

There was a significant reduction in pleural infection incidence, by almost a third, in the year following the start of the #COVID19 pandemic. Public health measures enforced during this period are likely to have played a significant role. https://bit.ly/3QAPPR9.

SELECTION OF CITATIONS
SEARCH DETAIL